After World War II, the company turned its sophisticated technologies and considerable experience to meeting peacetime needs. Continuing to produce high-quality steel, it developed machinery making use of this steel and endeavored to open up new business fields. In addition to heavy and chemical industries such as electric power, steel, shipbuilding, and petrochemicals, the company broadened into areas from automobiles to electrical machinery and information equipment, earning a worldwide reputation as an integrated producer of steel materials and machinery. Today, having grown into a comprehensive materials provider and manufacturer of mechatronics products, JSW is meeting society’s needs at the forefront. In the steel and energy products business, we are serving the needs of the energy industry in areas such as electrical power generation, oil refining, natural gas, and wind power generation. In the industrial machinery products business, we supply equipment for manufacturing and processing plastic materials, along with a diverse range of products in areas from information technology to defense.

In 1907, the Japanese government launched a joint venture for the purpose of domestic weapons production in Muroran, Hokkaido—later to become a major steel manufacturing center—consisting of two British firms (W.G. Armstrong and Vickers) and one Japanese company. That was the birth of the Japan Steel Works, Ltd. (JSW).

A company that creates change with creative technology, and contributes to the development of society

· Continue to provide clients with surprise and excitement
· Coexist with society and sustain profits
· Believe in constant change
Aiming for Stable Growth as a Company through Monozukuri and Value Creation

Since its founding in 1907, the Japan Steel Works, Ltd. (JSW) has pursued monozukuri (good manufacturing practices) and sought to create value, contributing to the further development of society by leveraging cutting-edge technologies to continue meeting the demands of customers in Japan and overseas.

The current global situation is uncertain and the future outlook defies prediction, but however the times may change, we continue to aspire to a spirit of enterprise focused on meeting the demands of our customers through a commitment to monozukuri and value creation.

JSW is a global corporation carrying out steel and energy products business, with products in electric power, oil, natural gas, and other energy fields, as well as industrial machinery products business with a broad lineup centering on equipment for plastics processing and products employing lasers. We are contributing to the further development of society by meeting its needs with the technologies and skills amassed during our long history spanning more than a century, as well as with new technological development.

We will continue to do all in our power to meet our stakeholders’ expectations, aiming to achieve stable growth as a company through monozukuri and value creation. In so doing, we remain committed to performing our obligations on four different fronts, ensuring satisfaction for customers, employees, and shareholders, as well as fulfillment of our responsibilities to society.

We welcome the continued support and encouragement of our stakeholders as we go forward.

Naotaka Miyauchi
Representative Director and President
Business Unit Structure and Product Groups

Steel and Energy Products
- Steel Castings and Forgings
- Steel Plates and Steel Structures

Industrial Machinery Products
- Plastics Machinery
- Other Machinery

Steel Castings and Forgings
- Monoblock Rotor Shafts for Power Generators
- Shell Flanges for Nuclear Reactor Pressure Vessels
- Turbine Casings for Thermal Power Plants
- Rolls for Plate Mills

Steel Plates and Steel Structures
- Pressure Vessels for Oil Refining
- Clad Steel Plates and Pipes
- Wind Turbine Systems

Plastics Machinery
- Large-Size Pelletizers
- Twin-Screw Extruders (TEX)
- Film and Sheet Production Systems
- Plastic Injection Molding Machines
- Continuous Multilevel Blow Molding Machines

Other Machinery
- Excimer Laser Annealing Systems
- Magnesium Alloy Injection Molding Machines
- Dampers and Tightlock Couplers for Railway Cars
- Compressors
- Defense Equipment

Hiroshima and Yokohama Plants
Design, casting, machining, equipment maintenance, power use management, manufacture of machine parts, equipment installation, security management, employee welfare, and subsidiaries and affiliates in related fields

Muroran Plant
Design, manufacturing (casting, machining, rolling, welding), facility maintenance, power use management, transportation, testing, security management, employee welfare, and subsidiaries and affiliates in related fields

Markets
- Electric power / Iron and steel
- Oil and natural gas
- Natural energy
- Petrochemicals
- Industrial machinery
- Vehicles
- Information technology
- Defense

Parent business units

Production

Products
Behind All JSW Products Is Our Insistence on Being the Technological Leader

State-of-the-art production facilities deliver the world’s top level of quality, on which our customers have come to rely. We take pride in our three production bases at Muroran, Hiroshima, and Yokohama, which today and every day provide the world with advanced products and systems. At each of these plants, which are thoroughly streamlined and designed for the ultimate in efficiency, numerous specialists take on the challenge of technology innovation. The qualities of JSW can be seen in these three plants, fully equipped with the production systems and staff to meet the diverse needs of the age, while striving for high precision and energy efficiency. Total quality control (TQC) is of course pursued at all our plants. In 1974 we gained accreditation by the American Society of Mechanical Engineers (ASME) certifying that our nuclear reactor pressure vessels and materials, as well as our general pressure vessels and boilers, meet the highest quality standards of that organization, recognized all over the world. We were awarded the prestigious Deming Application Prize for quality control in 1983. Then in 1994 we earned ISO 9001 and 9002 certification for international quality management (combined as ISO 9001 in 2002), and in 1998 we received ISO 14001 environmental management systems certification, among other examples of the worldwide recognition our company has achieved for the excellence of our quality and manufacturing technology as well as our efforts to protect the environment.

Main facilities
- 120-ton electric furnace / 150-ton electro-slag remelting furnace / 5-ton vacuum induction melting furnace / 3,000-ton to 14,000-ton presses / 30,000-horsepower 4-high reversible plate mill / 12,000-ton pipe forming press / low-frequency quenching equipment / metal machining tools / 70- to 730-ton wharf crane

Muroran Plant
Ever since our founding, the Muroran Plant has played a valuable part in the development of Japan’s heavy and chemical industries as a materials production center. Making use of large production facilities, such as a 14,000-ton hydraulic press, and cutting-edge equipment, including a 150-ton electro-slag remelting furnace, the plant supplies the world with high-quality products that include very large to small cast and forged steel products, steel plates and pipes, reactors for oil refineries and petrochemical plants, as well as wind turbines and other products for the energy field.

Main facilities
- 8-ton high-frequency furnace / 6-ton electric furnace / precision casting equipment / plasma nitriding furnace and other heat treatment equipment / industrial chrome plating equipment / combination laser and turret punch press / vacuum welding equipment / 2,000-ton hydraulic press / machining center and other metalworking machines / 60-ton wharf crane

Hiroshima Plant
Dedicated to technological innovations especially in the fields of plastics and mechatronics, the Hiroshima Plant with its leading-edge manufacturing and assembly lines produces world-renowned large-size pelletizers and extruders, film and sheet production systems, and the latest plastics injection molding machines. The plant also has long experience in manufacturing and developing artillery and other defense equipment.

Main facilities
- Machining center / NC lathes / special equipment for screw machining and other metal machining tools

Yokohama Plant
Our excimer laser annealing (ELA) system for IT products, enabling mass production of high-quality LCD panels and organic EL panels, has the top share of its market. We are also developing and commercializing systems for the next generation of LCD products. Following in the steps of our blow molding machines, spinning extruders, and other main products, the ELA systems have earned high acclaim both in Japan and overseas. Our newest endeavor is the manufacturing of equipment for semiconductor production.
For more than a century since our founding in 1907, we have been meeting the needs of the times as one of the world’s leading materials manufacturers. Today we manufacture a wide variety of high-quality energy-related products in Muroran (Hokkaido) and supply them to global customers.

Period I (1907–45) Focusing on defense equipment, along with electric power generation parts

Period II (1946–99) Power, petroleum, steel, shipbuilding, etc., supporting Japan’s growth and on to the world

Period III (2000–) Concentrating on the energy field to meet growing worldwide demand
The origins of the Japan Steel Works, Ltd., as our name indicates, are in the manufacture of steel products. We provide excellent steel products created by high levels of craftsmanship, based on advanced technologies developed since our founding more than a century ago. Utilizing some of the world’s largest production facilities, such as a 14,000-ton hydraulic press, we manufacture large cast and forged steel products used in electric power generation and steel production; clad steel plates and pipes widely used in such fields as natural gas extraction, desalination, and petrochemical production; and pressure vessels for oil refineries. In so doing, we play an important role in supporting the global energy sector.
Supporting Industry around the World with Dependable Technology and Quality

JSW manufactures steel components used in electric power generation such as rotor shafts and turbine casings, as well as rolls used in the forging process at steel mills. These are products that demand absolute reliability and safety. Manufacturing products out of the world’s largest steel ingots, we are unrivaled in our wealth of steelmaking experience.

1. Monoblock Rotor Shafts for Power Generators (max. product weight 273 tons)

As a steel component used in turbine shafts, this product must withstand constant high-speed rotation. It must therefore be made of very high-quality steel, using advanced precision processing. By making large rotor shafts for high-output power plants, we are helping to meet the world’s power generation needs.

2. Shell Flanges for Nuclear Reactor Pressure Vessel (max. product weight 169 tons)

Pictured is a forged steel component used in nuclear reactors. Unlike conventional products made by welding separate pieces of metal together, our product is made entirely from a single high-quality steel ingot, the largest in the world. (The one shown here is made from a 600-ton ingot.) Our forged steel products are used in fields where absolute safety must be assured.

3. Turbine Casings for Thermal Power Plants

The cast steel product shown here is a casing for an electric power turbine. Advanced technology is employed in every phase from materials development to realization of the complex shape.

4. Rolls for Plate Mills (max. product weight 265 tons)

These are used in the rolling process at steel mills. Drawing on our extensive steelmaking technology, we provide all kinds of high-quality forged steel rolls including cold work rolls, hot and cold backup rolls, and thick plate backup rolls.

Also Oil, Natural Gas, and Water Resources

We supply a variety of energy-related products including pressure vessels used in oil refining, clad steel pipes for transporting gas extracted in natural gas fields, and wind power generators designed specifically for Japan’s natural environment. Our clad steel plate is also used in desalination plants, helping to meet growing water demand.

1. Pressure Vessels for Oil Refining (max. product weight 1,450 tons)

Among the facilities in oil refineries, our products are used in processes involving extremely harsh conditions. These include sulfur removal and conversion of heavy oil to lighter products through catalytic reactions under high temperature and high pressure, with addition of hydrogen. Handling every phase of production from materials development to manufacture and final assembly, we have the capability needed for maintaining consistent quality, enabling the provision of high-quality and highly dependable products.

2. Clad Steel Plates and Pipes

Two of the growing needs in the world today are for extraction of natural gas to meet clean energy demands, and for desalination plants to address the worldwide scarcity of water resources. Using our advanced steel rolling technology, we are creating clad steel plates and pipes to help meet these needs.

3. Wind Turbine Systems

Our leading-edge technologies are going into the development of wind turbine systems optimized to Japan’s climate. They offer highly efficient and reliable power generation with low maintenance costs and low noise levels. These systems are already in place in various parts of Japan, where they are contributing to more effective use of renewable energy sources.
Since establishing our Hiroshima Plant in 1920, we have gone beyond weapons production to manufacture compressors, papermaking machines, desalination equipment, and many other kinds of industrial machinery. After World War II, we contributed to the development of the Japanese petrochemical industry by supplying equipment for plastics manufacturing and processing. Today this area is central to our industrial machinery products business. We continue to meet the latest needs with the breadth of our technologies, making equipment for processing magnesium, and other light alloys, for manufacturing high-definition display panels, and for many more uses.
A Worldwide Reputation as a Top Maker of Plastics Machinery of All Kinds

We provide machinery for each step of the plastics manufacturing process, from pellet-making to forming of the final product. Each of these machines has earned high acclaim from our customers, as they greatly contribute to the supply of plastic products essential to our daily life.

Pellet-making process

Polymer made at a polymerization plant is put through a pelletizer to form plastic pellets for ease of handling. Additives are mixed into the pellets as needed, creating compound pellets with various additional functions such as thermal resistance.

Process for making plastic products

Pellets are melted and formed into the desired shape in order to make plastic products.

Typical plastic products

- Automotive parts
- Media-related products
- Vehicle tank
- 200-liter drum
- Optical films and sheets
- Sealant for photovoltaic cells

Our main customers: Manufacturers of automotive components, electronics parts, and films and sheets
Our main products: Injection molding machines, blow molding machines, and film and sheet production systems
Advanced Mechatronics Technologies Win Worldwide Acceptance

Drawing on our stock of established technologies as well as new ones developed in the latest research facilities, we are meeting customer needs around the world for large-size pelletizers, twin-screw extruders, and other plastics machinery. By conducting joint R&D with customers from their product development stage, we are cooperating also in early commercialization of the plastic materials they need.

1. Large-Size Pelletizers

These machines continuously produce large quantities of plastic pellets, mainly polypropylene and polyethylene. Our large-size pelletizers are used by many major petrochemical product manufacturers in and outside Japan.

2. Twin-Screw Extruders (TEX)

Boasting high output and excellent low-temperature mixing capability, our twin-screw extruders can be used for producing various compounded pellets. They bring high performance and functionality to all kinds of applications in a variety of plastic manufacturing processes, including mixing, devolatilizing, deairing, heating, direct molding, recycling, and environmental processing. We have also developed various metal materials resistant to corrosion and wear, enabling use with raw materials requiring these properties.

3. Very Large Twin-Screw Extruders (TEX)

Having built a number of very large twin-screw extruders, 35 meters long and weighing 320 tons, we are able to meet a variety of customer needs. JSW twin-screw extruders adopt block cylinders. The number of blocks can be increased as needed for diverse specifications, and we can also meet the need for long extruders.

Along with a Wide Array of Machines Comes Full Technical Support

Bringing together the wealth of experience and outstanding technology of a world-leading manufacturer, we make available a wide array of film and sheet production equipment and injection molding machines to meet broad-ranging customer needs. We also provide full technical support for helping customers increase their productivity and reduce costs. With a sales and service network covering America, Europe, and Asia, we are able to provide customer support on a global scale.

1. Film and Sheet Production Systems

With considerable experience manufacturing equipment for film and sheet production, we are able to meet a wide range of customer needs for producing general and industrial sheets as well as advanced films for optical applications.

2. Large-Size Injection Molding Machines

Plastics manufacturers all over the world are putting to use the advanced molding technology of our diverse lineup of injection molding machines large and small. We are able to offer comprehensive molding solutions, from plant layout proposals that include peripheral equipment for automation and energy saving to factory automation system support.

3. Blow Molding Machines

We have earned high acclaim due to our wealth of experience in supplying large blow molding machines catering to a diverse array of customer demands. Our machines are used to mold gasoline tanks and spoilers for automobiles, as well as drums for transporting liquids, industrial chemical containers, and other plastic items.
Supporting Industry Growth with Reliable Technology

As industry continues to grow, so does our extensive lineup of products for all kinds of industrial needs. Among them are gas compressors used by petrochemical companies, couplers and dampers for railway cars, and hydraulic machinery products such as bolt tensioners. Lately we have been turning our attention to equipment for manufacturing the high-resolution display panels found on tablets and other terminals. Leveraging our wealth of technology, we are devising ways of improving conventional products and developing new ones.

1. Excimer Laser Annealing Systems

Excimer laser annealing systems are essential for manufacturing ultra-high-definition panels used in devices such as smartphones. JSW started manufacturing and selling these systems in 1996, and has consistently responded to industry requirements by optimizing and enlarging them, as well as continually developing and supplying new technologies such as monitoring systems that are useful for manufacturing next-generation panels.

2. Magnesium Alloy Injection Molding Machines

Drawing on deep familiarity with metal materials, we developed a magnesium alloy injection molding machine using thixomolding, a revolutionary method for molding environmentally friendly magnesium products. With this machine, magnesium alloys can be formed with the same high precision as plastic, enabling wide application to products from automobiles to personal computers.

3. Double-Rubber Dampers and Tightlock Couplers for Railway Cars

All the couplers, dampers, and other products we manufacture for use with railway cars are the result of our outstanding design, materials, and manufacturing technology plus strict quality control, earning the trust and acclaim of each customer.

4. Compressors

Since manufacturing our first reciprocating compressor in 1920 for freezer use, we have continued to build on our experience and R&D achievements to produce mainly labyrinth piston compressors, supplying a total of just over 1,700 units to customers around the world in such industries as petrochemicals and steel.

Technology That Must Not Be Forgotten, Even in Peacetime

In making our contributions to Japan’s defense, we draw on the material- and machinery-making technology built up since our founding, together with advanced technologies in such areas as new materials, mechatronics, and simulations. These are applied to the design, manufacture, and maintenance of defense equipment from firing systems to missile launchers. We are also actively engaged in R&D on new defense equipment and systems.

Type 99 155-mm Self-Propelled Howitzer

Type 10 Battle Tank (gun section)

5-inch, 62-caliber Naval Gun

Type 87 Self-Propelled Antiaircraft Gun System (gun turret section)

Missile Launching Equipment

30-mm Cannon
Research and Development

Working to Realize Today’s Dreams with Tomorrow’s Technology

naming to become the global leader in monozukuri, we devote strong efforts to the development of new products and manufacturing methods based on our own technologies, while at the same time promoting technological tie-ups and joint development projects on multiple fronts so that technologies can be supplemented and commercialized at an early date. Moreover, our Research & Development Headquarters in cooperation among all the JSW divisions is actively working to enhance the functions, performance, and reliability of our existing core products while developing and perfecting products in new fields meeting the needs of this age, leading to the development of new businesses. As targets of our R&D and commercialization efforts, we are focusing mainly on energy and environment, electronics, information and communications, and automotive fields. Besides our own R&D projects, we participate in national projects and take part in joint research with domestic and overseas research institutions. With R&D facilities in three locations, the Muroran Research Laboratory, the Hiroshima Research Laboratory, and the Yokohama Research Laboratory, we conduct our R&D activities making use of the distinctive capabilities of each facility.

Research and Development

Hiroshima Research Laboratory

The Hiroshima Research Laboratory was established in 1975. R&D at this facility focuses on highly functional composite materials in plastics and polymeric clay fields, from raw materials to the molding process for making finished products, as well as on development of new materials for these processes. Research also covers wear-resistant and corrosion-resistant elements for equipment such as extruders and injection molding machines. These technologies are then applied to development of ultra-light injection molding techniques, environmentally friendly plastics and other new materials. Research activities are also carried out in a wide range of other areas including micro- and nano-scale transcription molding process and nanotechnologies.

Muroran Research Laboratory

The Muroran Research Laboratory was established in 1997 with the founding of JSW. From fundamental to applied studies, the laboratory has broadened its research fields on materials for key industries, such as steelmaking, shipbuilding, oil refining, hydrothermal/nuclear power generation, and bridge construction. It has developed manufacturing processes and material technologies for large forgings and castings and achieved numerous results in new product and technology developments. In recent years, strong research efforts are being devoted to studies on manufacturing processes for functional materials, including high-purity steel and nonferrous materials, as well as to developing heat-resistant, corrosion-resistant, and wear-resistant materials.

Yokohama Research Laboratory

Our R&D work in the flat panel display and semiconductor-related fields is concentrated here in the Yokohama Research Laboratory where efforts are also going into development of innovative technologies and new products as successors to our esteemed laser processing system, a core JSW product. Another area of research here aims to develop new manufacturing processes for blow molding machines and other industrial machinery as well as new analysis and heating technologies. Rather than simply focusing on product development, we strive to meet customer needs by paying attention to process technology development.

1. Micro-Nano Melt Transcription Molding process

Micro-Nano Melt Transcription Molding is an innovative molding process for producing plastic products with fine patterns on their surfaces at the scale of tens of nanometers to several hundred micrometers. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process. Thermoplastic resin metal injection molding (MOD) was combined with laser technology to build a new process.

2. Superalloys for A-USC power generation

Current efficiency of the thermal power plants using steam turbines is only slightly above 40 percent. By elevating the steam temperature to 700ºC, the efficiency can be increased dramatically. In the upcoming technology of advanced ultra-supercritical (A-USC) power generation systems, large superalloy steam turbines are expected to replace conventional heat-resistant steel turbines. We have developed a new superalloy component with minimal segregation tendency, excellent hot workability, high homogeneity, and superior high-temperature strength that will play the key role in A-USC plants. (The photo shows a high-pressure steam turbine rotor.) We have developed a new superalloy component with minimal segregation tendency, excellent hot workability, high homogeneity, and superior high-temperature strength that will play the key role in A-USC plants. (The photo shows a high-pressure steam turbine rotor.) We have developed a new superalloy component with minimal segregation tendency, excellent hot workability, high homogeneity, and superior high-temperature strength that will play the key role in A-USC plants. (The photo shows a high-pressure steam turbine rotor.) We have developed a new superalloy component with minimal segregation tendency, excellent hot workability, high homogeneity, and superior high-temperature strength that will play the key role in A-USC plants. (The photo shows a high-pressure steam turbine rotor.) We have developed a new superalloy component with minimal segregation tendency, excellent hot workability, high homogeneity, and superior high-temperature strength that will play the key role in A-USC plants. (The photo shows a high-pressure steam turbine rotor.)

3. Superconducting thin film

Current efficiency of the thermal power plants using steam turbines is only slightly above 40 percent. By elevating the steam temperature to 700ºC, the efficiency can be increased dramatically. In the upcoming technology of advanced ultra-supercritical (A-USC) power generation systems, large superalloy steam turbines are expected to replace conventional heat-resistant steel turbines. We have developed a new superalloy component with minimal segregation tendency, excellent hot workability, high homogeneity, and superior high-temperature strength that will play the key role in A-USC plants. (The photo shows a high-pressure steam turbine rotor.)

4. Analysis technology

An important factor for raising quality in the manufacture of large cast and forged steel products is achieving homogeneity of chemical composition and mechanical properties in the interior of the materials. To this end, various analytical techniques are employed in each of the manufacturing processes from steelmaking to casting, forging, and heat treatment. As a result, the status in the interior of the material can be predicted and the manufacturing conditions can be optimized accordingly. The figure above shows the temperature distribution in a turbine casing, which is a cast product, determined by means of three-dimensional solidification analysis.
1907
Founded by Yokkoku Colleery Steamship Company and the British firms Sir W.O. Armstrong, Whitworth & Co., Ltd. and Vickers Sons and Maxim, Ltd., with capitalization of 10 million yen. The headquarters and factory are located in Muroran, Hokkaido.

1915
The headquarters are moved to Tokyo.

1920
The Hiroshima Plant is established with the purchase of Hiroshima Seikakusho Co., Ltd., a company located outside the city of Hiroshima.

1935
Construction of the Yokohama Plant begins in Kanaseawa-cho, Kanagawa Prefecture. The plant is completed in June 1936 and goes into operation.

1938
Construction of the Tokyo Plant begins in Toshima-ku, Tokyo-ku; the plant is completed in May 1941 and goes into operation.

1950
The Japan Steel Works, Ltd. is declared bankrupt and liquidated with capital of 200 million yen. The new company takes over operations at the four plants in Muroran, Hiroshima, Yokohama, and Tokyo as well as the headquarters and other offices.

1969
Construction of the Fuchu Intelligent Park begins on the site of the former Tokyo Plant.

1978
Japan Steel Works America, Inc. is established.

1980
Offices are established in New York, Düsseldorf, and Tehran.

1983
Japan Steel Works America, Inc. is established.

1986
The headquarters are moved to Osaki in Tokyo.

1989
The company marks the centenary year of its founding.

1990
The Panasonic Corporation becomes a subsidiary of JSW.

1991
Construction of the Fuchu Intelligent Park begins on the site of the former Tokyo Plant.

1992
JSW Machinery Trading (Shanghai) Co., Ltd. is established in China.

1993
JSW Machinery (Ningbo) Co., Ltd. is established in China.

1994
ISO 9001 and ISO 9002 certification is acquired.

1997
ISO 14001 certification is acquired.

1999
JSW Machinery Trading (Shanghai) Co., Ltd. is established in China.

2000
ISO 14001 certification is acquired.

2001
JSW Machinery Trading (Shanghai) Co., Ltd. is established in China.

2002
ISO 14001 certification is acquired.

2005
The 10,000-ton press at the Muroran Plant is upgraded to a maximum upsetting force of 14,000 tons. JSW Plastics Machinery (Taiwan) Corp. is established.

2008
The Shanghai Office is established.

2009
The Technology Development Center is completed on the Hiroshima Plant premises.

2010
Five overseas offices are established in Los Angeles, Houston, and Singapore.

2015
Japan Steel Works Europe GmbH is established.

2016
Japan Steel Works (Singapore) Pte. Ltd. is established.

2018
JSW Machinery Trading (Shanghai) Co., Ltd. opens a new office.

2019
JSW Plastics Machinery (Singapore) Pte. Ltd. is established.

2020
JSW Plastics Machinery (Indonesia) Pte. Ltd. is established.